[報文]

熱ルミネッセンス測定におけるエックス線の 再照射線源としての利用

坂部 寬¹¹, 斉藤希巳江²¹, 等々力節子²¹

¹⁾ 独立行政法人農林水産消費技術センター横浜センター(〒231-0003 横浜市中区北仲通5-57)
 ²⁾ 独立行政法人食品総合研究所(〒305-8642 茨城県つくば市観音台2-1-12)

Application of X-ray as re-radiation source in thermoluminescence analysis

Hiroshi SAKABE¹, Kimie SAITOU² and Setsuko TODORIKI²

¹⁾ Center for Food Quality, Labeling and Consumer Services, Yokohama Center, 5-57, Kitanakadori, Naka-ku, Yokohama, Kanagawa, 231-0003, Japan

²) National Food Research Institute, 2-1-12, Kannondai, Tsukuba, Ibaraki, 305-8624, Japan

Summary

Thermoluminescence (TL) method has been used for detection of irradiated foods which are contaminated with silicate minerals. After the first TL measurement, minerals are re-irradiated with ⁶⁰Co- -rays for normalization and the first and second glow curves are compared. In the present study, the TL glow curves were investigated for quartz sand and minerals isolated from pepper and potato after the irradiation with gamma and 70keV of X-ray, in order to know the possibility of whether to be able to use X-rays as re-radiation source for normalization. Glow curves of samples irradiated with X-rays showed same shape and peak position as those irradiated with ⁶⁰Co- -rays, but large difference in intensity. The intensity of TL glow curve for X-ray was significantly larger than that for -rays. These results indicate that X-ray irradiation has a potential to apply for the confirmation of mineral isolation due to higher TL intensity, and as a re-radiation source.

Key words: thermoluminescence, re-radiation source, X-ray

はじめに

食品への放射線照射は,日本ではジャガイモの芽 止めを目的とした利用以外は認められていない が¹⁾,非加熱であると共に薬剤の残留がなく,品質 変化が少ないことから,殺菌の他に発芽防止,殺虫, 熟度調整などに利用されている²⁾。また,安全性が 国際的に認知されるようになり,海外での食品照射 の実用化に伴い,照射食品の流通が予想されること から³⁾,適正照射の確保のため,国際的に照射食品 の検知(判別)技術の開発が進められている4)。

照射食品の検知法としては熱ルミネッセンス(TL) 法,電子スピン共鳴(ESR)法,炭化水素法,シク ロプタン法などがヨーロッパ標準化委員会(CEN) の標準分析法として制定されている⁵⁾。中でも,TL 法は食品に付着する砂・土などの中の鉱物質等が発 光体になりうるため,適用範囲が広い検知方法であ る。しかしながら,CENが標準化したTL法におい ては,食品付着鉱物質の組成や応答特性が不明なた め,再照射法として,TL測定した同一試料に,1kGy のコバルト 60 ガンマ線を再照射した後,再度 TL 測 定し,両者の発光量の比により照射の有無を判定し ている。従って,TL 法による照射食品の検知に は,再照射のためのガンマ線線源が必要であり,こ の方法を実施できるのは放射線設備のある場所に限 られる。再照射に用いる放射線源については,Soika ら⁶⁾により検討され,コバルト 60 ガンマ線に加え て2~10MeV までの電子線および 90Sr 線が利用 可能であることが報告されている。最近,著者の1 人は⁷⁾,食品の品質管理現場での利用可能な簡易な 軟エックス線照射装置を開発し,食品や食品容器等 の表層殺菌に利用できる可能性を明らかにした。

そこで,本研究では,TL 法における再照射の線源 として用いるガンマ線の代替としてエックス線が利 用可能であるかを,コショウ付着鉱物質,ジャガイ モ付着鉱物質および石英砂を試料として用いて検討 した。

実験方法

1.試料

白コショウ付着鉱物質および北海道岩内産ジャガ イモ付着鉱物質は,CENの標準分析法に準じて前 報⁸⁾と同様の方法で精製した。石英砂(SiO₂)は和 光純薬工業株式会社製を用いた。

2.照射

ガンマ線照射は,独立行政法人食品総合研究所内 のコバルト60を線源としたガンマセル(Gammacell 220 Nridion, Canada)を用い,室温,線量率750Gy/h で行った。線量はFriche線量計を用いて測定した。 エックス線照射は,独立行政法人農林水産消費技術 センターが開発したインバーター式軟エックス線発 生装置密閉型(トーレック株式会社製TRIX-70L)を 搭載した実験用軟エックス線照射装置を用い,室温, 線量率2kGy/h エネルギー70keVで行った。線量は 2層式自由空気電離箱式線量計(トーレック株式会 社製PD-4000-1)を用いて測定した。試料は,照射 後3日目にTLスペクトル測定に供した。

3.熱ルミネッセンス(TL)スペクトル測定

TL スペクトル測定は, TLD リーダー(HARSHAW-BICRON M-3500)を用い,窒素雰囲気下で行った。 測定条件は,昇温開始温度70 ,昇温速度7 /sec, 終了温度400 とし,全温度範囲のTL スペクトルの 積分値を求めた。さらに続けて同じ条件でTL スペク トル測定を行い、その発光強度の積分値(疑似発光 量)を前の値から差し引き、これをTL 発光量(glow 1)とした。その後、測定試料を550 で2時間熱処 理し、さらにガンマセルを用いて、1kGyの再照射 を行った。一昼夜経過後、再度上記と同様にその試 料のTL スペクトルを測定し、得られたTL 発光量を glow 2 とした。なお、glow 1をglow 2 で除した値 を相対TL 発光量(TL 比)とした。エックス線を再 照射線源として用いた場合は、0.5、0.3 および0.1kGy の線量で照射した。

実験結果および考察

1.TL スペクトル曲線の比較

Fig.1 に白コショウ付着鉱物質に 1.0 kGy の線量で ガンマ線およびエックス線を照射した TL 曲線を示 す。縦軸は発光強度,横軸は温度を示している。ガ ンマ線を照射した TL 曲線には, 150 付近, 200~ および 300 付近にピークが見られるが,図 220 に示すように,主ピークが300 付近にあるもの (a)あるいは150 付近にあるもの(a')の異なる TL 曲線が得られた。これは、コショウ試料の場合、含 まれる鉱物質の種類や含有量が不定であり,同一試 料から得られる TL 曲線においてもスペクトルパ ターンが異なったものと考えられる。シ。エックス線 を照射した試料においても,同様の傾向が見られた が,ガンマ線を照射した場合とスペクトルの位置お よび形に大きな違いは見られなかった。しかし、 エックス線を照射した試料の発光強度は約2倍大き くなることがわかる。

Fig.2 にジャガイモ付着鉱物質に 1.0 kGy の線量で ガンマ線およびエックス線を照射した TL 曲線を示 す。この試料は,前報⁸⁾で述べたように,比較的低 い温度帯にピークがあることから結晶性珪酸塩を多 く含んでいる混合鉱物質であると考えられる。ジャ ガイモへの放射線照射は,一般に 50 ~ 150kGy で, 規格化のための再照射も 250kGy と低い線量のガン マ線が用いられているが³⁾,本実験では,エックス 線照射の影響を検討するため,1.0 kGy の線量で照 射し,試料に供した。ジャガイモ付着鉱物質の TL 曲線には,170 ~ 200 にピークが見られ,コショ ウの場合と同様に,ガンマ線照射とエックス線照射 では,スペクトルの位置および形に大きな違いは見 られなかった。しかし,Table 1 に示すように,単位

Fig. 1 TL glow curves of minerals from white pepper irradiated with (a, a') -rays and (b, b') X-rays at 1.0 kGy. The measurements were made after 3 days of storage since radiation treatment.

Fig. 2 TL glow curves of minerals from potato irradiated with (a) -rays and (b) X-rays at 1.0 kGy.

重量当たりの TL 発光量を比較すると, コショウで はエックス線照射試料はガンマ線の約2倍, ジャガ イモ試料では約1.5倍であった。これは, エックス 線とガンマ線とのエネルギー特性あるいは線量率の 違いなどによりエックス線の TL 発光量が大きく なったものと考えられる¹⁰。

一般的な圃場は,石英などの二酸化珪素,粘土鉱物(層状珪酸塩鉱物)から成っている。そこで,比較的純度の高い石英砂を用いて,同様の実験を行った。前述の結果と同様に,ガンマ線およびエックス線照射試料のスペクトルの位置および形に大きな違いは見られなかった。しかし,発光強度は,コショウ試料およびジャガイモ試料と比べて,ガンマ線およびエックス線照射試料ともに非常に大きくなることがわかった(Fig.3)。また,エックス線照射試料のTL発光量も,ガンマ線の約4倍と大きくなることがわかる(Table 1)。TL発光量は,鉱物質の結晶性や結晶構造に影響されることが知られており¹¹¹⁾,エックス線とガンマ線のエネルギー特性あるいは線量率の違いがより大きく反映したものと考えられる。

	Glow 1/sample weight (nC/mg)		
	Minerals from pepper	Minerals from potato	Quartz sand
Control	1.29 ± 0.61	1.34 ± 0.57	1.60 ± 0.72
-rays, 1 kGy	481.43 ± 31.47	439.36 ± 39.13	618.75 ± 61.85
X-rays, 1 kGy	924.46 ± 49.02	608.28 ± 48.74	2615.36 ± 234.40

 Table 1
 Quantum yield of the TL emission for each unit weight of minerals from white pepper and potato, and quartz sand irradiated with -rays and X-rays.

 $n = 4 \text{ mean} \pm \text{S.D.}$

The measurements were made after 3 days of storage since radiation treatment.

Fig. 3 TL glow curves of quartz sand irradiated with (a) -rays and (b) X-rays at 1.0 kGy.

TL 法による照射食品の検知では,食品に付着し ている鉱物質の分離が必要であり,疑似発光量を検 出限界とすると,この3倍値を示すものを鉱物質が 含まれた有効な試料としている^{5,9}。従って,試料 によってはglow2が小さく,鉱物質が分離されて いないと判断される場合がある。ガンマ線よりも発 光強度の大きいエックス線は,このような場合,鉱 物質の分離の確認に利用できるものと考えられる。 エックス線照射試料は,ガンマ線照射試料と比べ て,発光強度は異なるものの,TL スペクトルには 位置および形に大きな違いは見られなかったことか ら、食品照射のような人為的な照射によって生じる 発光ビークの位置を、自然放射線によるそれと区別 して確認することが可能で、エックス線がTL法に おける再照射の線源として利用できる可能性が示唆 された。ただし、ガンマ線を再照射線源とした場合 のTL比とエックス線を用いて算出したTL比を同等 の判断基準で用いることは不可能である。

2.再照射線源としてのエックス線の利用の一例

食品に付着している鉱物質において, TL 法にお ける再照射の線源として用いるガンマ線の代替とし てエックス線が利用可能であるかを検討するため、 比較的 TL スペクトル曲線が安定であったジャガイ モ付着鉱物質を試料として用いた。前述したように、 ジャガイモの放射線照射には低い線量のガンマ線が 用いられているが 5,本実験では,TL法における再 照射の線源を検討するための試料の一例としてジャ ガイモ付着鉱物を用いた。したがって,1~5kGy のガンマ線を照射し,試料に供した。図4にジャガ イモ付着鉱物質にガンマ線を 5.0 kGy 照射した時の TL 曲線(glow 1)および規格化のためにガンマ線を 1.0kGy 再照射した TL 曲線(glow 2(-ray))を示す。 両曲線は,ほぼ同じスペクトルの形を示し,照射の 有無をこれらの比により判別できることがわかる。 また, glow 1 を測定後, エックス線を 0.5kGy の線 **量で再照射した試料の**TL 曲線 (glow 2(X-ray)) (Fig.4)も glow 1 とほぼ同じ形を示している。しか しながら,ガンマ線の再照射曲線と比べて TL 発光 量が非常に大きくTL比の算出には0.5kGyの線量で は不適合である。そこで,本試料での再照射線源の 線量を検討してみることにした。

0,1,3,5 kGy のガンマ線を照射した試料を用 い,定義されている線量(ガンマ線1 kGy)で再照

射し,求められる TL 比を基準として,再照射線源 をエックス線 0.1,0.3 および 0.5kGy にした場合の TL 比を比較した(Fig.5)。ガンマ線の線量とともに いずれの TL 比も大きくなるが,エックス線0.3 およ び 0.5 kGy を再照射線源として用いた場合は,ガン マ線 1 kGy (再照射)と比べて TL 比は小さい値を 示した。これは,前述したように,エネルギー特性 あるいは線量率の違いなどにより,エックス線での 再照射後の TL 発光量(glow 2)が大きくなったた めである。エックス線の線量を 0.1 kGy にすると, ガンマ線のいずれの線量においても,TL 比はガン マ線 1 kGy (再照射)とほぼ同じ値を示すことがわ かった。

Fig. 5 TL glow ratios of minerals from potato irradiated with -rays.

re-irradiation with -rays at 1 kGy,
 re-irradiation with X-rays at 0.5 kGy,
 re-irradiation with X-rays at 0.3 kGy,
 re-irradiation with X-rays at 0.1 kGy.

本実験の結果は,あくまで今回用いたジャガイモ 付着鉱物質試料についての線量値であり,食品に付 着している鉱物質は,食品および産地により異なる ため,再照射線源としてのエックス線の線量につい ては,今後多くの試料を用いて検討する必要がある。

まとめ

TL 法における再照射の線源として用いるガンマ 線の代替としてエックス線が利用可能であるかを, コショウおよびジャガイモ付着鉱物質ならびに石英 砂を試料として用いて検討した。エックス線で照射 された試料の発光曲線はガンマ線で照射された発光 曲線と同じ形およびピーク位置を示したが,発光強 度は大きく異なっていた。規格化のためにエックス 線で再照射されたジャガイモ付着鉱物質のglow 2 はglow 1 と同じ形をしていた。これらの結果は, エックス線はその高いTL 発光量により分離鉱物質 の確認および再照射線源としての利用の可能性を示 唆した。

演 対

- 1)厚生省告示第 285 号,昭和 47 年 8 月 30 日,官 報第 13707 号(1972)
- 2) 林徹: 放射線滅菌の現状と展望, Radioisotopes, 47(4), 60 (1998)
- 3) 久米民和: 世界における食品照射の現状, Radioisotopes, 51, 522-532 (2002)
- 4)等々力節子:照射食品の検知法, Radioisotopes,
 49,467-469(2000)
- 5) EN1788: Foodstuffs-Thermoluminesence detection of irradiated food from which silicate minerals can be isolated, European Committee for Standardization, Brussels, Belgium (2001)
- 6) Soika C. and Delincee H.: Thermoluminescence analysis for detection of irradiated food- Luminescence characteristics minerals for different types of radiation and radiation doses, *Lebensmittel-Wissensvhaft & Technologie*, 33, 431 (2000)
- 7)坂部寛他:軟エックス線による非加熱殺菌技術の開発,農林水産消費技術センター調査研究 報告,28,29-34(2004)
- 8) 中馬誠他:熱ルミネッセンス法による国産照射 馬鈴薯の検知, 日本食品科学工学会誌,51(6).

298-303 (2004)

9)田邊寛子:市販香辛料の熱ルミネッセンス特 性, 東京都立産業技術研究所報告 A, 1-2(2001)

10) Soika C. and Delincée H. :Thermoluminescence analysis for detection of irradiated food- effects of dose rate on the glow curves of quartz, *Lebensmittel-Wissensvhaft & Technologie*, **33**, 440 (2000)

11) Pinnioja S. et al.: Detection of irradiated foods by luminescence of contaminating minerals-effect of mineral composition on luminescence intensity, *Radiation Physics and Chemistry*, 55, 743-747 (1999) (2005 年 7 月 31 日受理)