# [報文]

# 照射誘導ラジカルの緩和現象

小川英之<sup>1)</sup>,鵜飼光子<sup>2)</sup>, A. Lund<sup>3)</sup>, 下山雄平<sup>1)</sup>

1) 室蘭工業大学大学院 (〒 050-8585 北海道室蘭市水元町 27-1)

2) 北海道教育大学函館校(〒040-8567 北海道函館市八幡町1-2)

<sup>3)</sup> Linköping University (S-583 85 Linköping, Sweden)

# Electron spin relaxation behaviours of radiation induced radicals

Ogawa Hideyuki<sup>1)</sup>, Ukai Mitsuko<sup>2)</sup>, A. Lund<sup>3)</sup> and Shimoyama Yuhei<sup>1)</sup>

<sup>1)</sup> Soft-Matter Physics Laboratory, Graduate School of Emergent Functional Sciences, Muroran Institute of Technology, 27-1 Mizumoto-cyo Muroran, Hokkaido 050-8585 Japan

<sup>2)</sup> Department of Environmental Science, Hokkaido University of Education,

1-2 Hachiman-cyo Hakodate, Hokkaido 040-8567 Japan

<sup>3)</sup> Department of Chemical Physics, Linköping University, S-583 85 Linköping, Sweden

### Summary

Electron spin relaxation behaviours of radiation induced radicals were studied by the continous microwave saturation method of electron spin resonance (ESR) spectra. Radiation induced radicals in nutmeg yielded a sharp and intense ESR signal at g = 2.0. By the progressive saturation procedure, we could evaluate relaxation times (T1 and T2). The computer program to analyze the ESR line shape using all data points on a saturation curve was applied. Based on the theoretical analysis, the relaxation behaviors of radiacals were revealed. Radiation induced radicals of the specimens yielded relaxation times, T1 in the µsec and T2 in nsec ranges, respectively. Upon the irradiation, T1 shortened, and T2 lengthened. The progressive saturation curve was changed by the irradiation.

Key words: electon spin resonance, relaxation behavior, radiation, radical

## はじめに

放射線照射による食品の処理には幅広い応用例が ある。照射処理は病原体を除去し、食中毒を減ら す。照射処理はフリーラジカルを生み出すことか ら、様々な食品の照射処理検知のために電子スピン 共鳴(Electron Spin Resonance: ESR)法が用いられ ている<sup>1)</sup>。ESR はラジカルを直接計測できる高感度 な分析方法である。

我々はすでに照射朝鮮人参,照射スパイス及び照 射小麦粉の放射線処理におけるラジカルの ESR に よる検知ついて報告し<sup>2)~4)</sup>,照射食品中の放射線誘 導ラジカルとラジカルの緩和現象に基づく ESR に よる検知法を報告した<sup>5)</sup>。照射食品のラジカルの緩 和挙動を明らかにするためにマイクロ波の強度を変 えて信号計測を行っている。得られる信号強度の変 化から,有機フリーラジカル由来の信号が比較的容 易に飽和することを明らかにした。

常磁性系に対する連続的なマイクロ波の飽和の理 論は、すでに明らかにされている<sup>60</sup>。不均一に広が ることによって特徴づけられた様々な ESR 信号の 飽和曲線からスピン-格子緩和時間(T1)とスピン ースピン緩和時間(T2)を決定することが出来るこ とが近年報告された<sup>7)</sup>。本研究では飽和曲線におけ る全てのデータを使用し,ESR信号のマイクロ波強 度への依存性を分析する計算プログラムを開発し た。理論解析に基づいて放射線誘導ラジカルの緩和 挙動を明らかにした。

#### 実験方法

#### 1. 試料

試料は,4℃ で保存されたナツメグを使用した。 ナツメグは,独立行政法人農研機構食品総合研究所 より提供された。測定用試料は,石英(99.9%)の ESR 試料管に 300mg を入れた。酸素の影響を受け ないよう,試料管内の空気をアルゴンで置換(5分 間脱気し,2分間アルゴンを詰める手順を5回繰り 返し)処理し封じたものを使用した。試料の照射処 理は,独立行政法人農研機構食品総合研究所にて 行った。60Coを線源とし,照射量を1,3,5 kGy と して,室温で照射した。

#### 2. ESR 測定

ESR は JES-FA100(日本電子株式会社)を用い, X バンド(9.3 GHz)で信号測定を行った。測定磁場 は 250 ± 250 mT と 350 ± 10 mT に設定した。著者 らはすでに照射ナツメグを用いて ESR 計測を行い, ESR による検知が可能であることを報告してい る<sup>8</sup>。また,マイクロ波出力を 0.1 ~ 27mW まで変 化させて ESR 測定を行い,照射誘導ラジカルの緩和 挙動を検討し,照射処理による影響を明らかにした。 本研究では,マイクロ波強度を 0.1mW ~ 200mW に 変化させ, ESR 信号計測を行い,照射誘導ラジカル の緩和挙動を詳細に検討した。測定温度は室温で 行った。

### 3. 線形理論による計算プログラム

ローレンツ型のスピンパケットに関する ESR の 線形を表現できるガウス型包絡線の理論は次式であ らわされる<sup>6)</sup>。

$$g(r) \propto \frac{B_0 \beta}{\Delta B_C} \int_{-\infty}^{\infty} \frac{e^{-(a^2 r'^2)dr'}}{t^2 + (r - r')^2}$$
(1)

ここで, ガウス型の線幅 t/a とローレンツ型の線幅 t の組み合わせがボイト線型をもたらす。 $\beta$  は B0 を

中心とした線形関数g(r)の推移確率である。変数 rとr'は次式のように磁場BとB'と一致することに よって定義される。

$$r = \frac{B - B_0}{\Delta B_L} \qquad r' = \frac{B' - B_0}{\Delta B_L} \tag{2}$$

緩和曲線の形状に影響を及ぼす変数 a と t2 は次式の ように与えられる。

$$a = \frac{\Delta B_L}{\Delta B_G} \qquad r^2 = 1 + r^2 B_1^2 \beta T_1 T_2 = 1 + s^2$$
(3)

ここで, γは電子の磁気回転比, sはいわゆる飽和 因子である。Δ BL とΔ BG は飽和に達していない ローレンツ型やガウス型の各線形の半値幅であり, 一次導関数に相当するピーク間の線幅 λ L と λ Gの 条件を次式のように表現することができる。

$$\Delta B_L = (\sqrt{3}/2)\lambda_L \qquad \Delta B_G = \lambda_G/\sqrt{2} \tag{4}$$

飽和因子 s は,磁気回転比γ,空洞共振器内におけ るマイクロ波の磁場成分の回転量 B1,そしてスピ ンー格子緩和時間 T1 とスピンースピン緩和時間 T2 をそれぞれ含んでいる。B1の大きさは,共鳴装置 内における直線偏光した B1の大きさの1/2である。 マイクロ波共振器の試料位置におけるマイクロ波の 磁場成分の回転量 B1の大きさは,以下の式により, 入力されるマイクロ波強度が関係する。

$$B_1 = k_{\sqrt{Q_L P}} = k_{\sqrt{P}} \tag{5}$$

ここで, 定数 K は共鳴装置に依存する。

実験的に測定されたマイクロ波強度 P とスピン緩 和依存定数 P0 を代入すると

$$P_0 = \frac{1}{K^2 \gamma^2 \beta T_1 T_2} \tag{6}$$

式(1)の吸収線の形状は式(7)に計算し直すこと ができる。

$$g(\mathbf{r}) \sim C \frac{\beta \sqrt{P}}{t} u(a\mathbf{r}, at)$$
(7)

ボイト関数 u は, 複素関数 w の実数部分である。

w (z) =exp (-z2) erfc (-iz) (w=u+iv,z=at+iar)

線型関数g(r)(式(7))による評価法は,複素関 数の実数部分である関数u(ar, at)を拡大して算出 した<sup>9)</sup>。複素関数の実数部分を計算するため,ガウ スタイプの求積は従来の手順で行った<sup>10)</sup>。1本線や 不均一に広げられた線の緩和挙動を計測するため, 遷移確率 $\beta$ は単純な二準位系の中で不変であると設 定した<sup>9)</sup>。

フィッティングを行うため,非線形の最小二乗法 のフィッティングプログラムに組み込んだ。Fig. 1 に計算プログラムの入力画面を示す。

### 実験結果および考察

#### 1. ESR スペクトルの挙動

Fig. 2 に, ナツメグの典型的な ESR スペクトルを 示した。g 値が約 2.0 を示す強く鋭い1本線の信号 は, 有機フリーラジカル由来の信号である。照射ナ ツメグの ESR スペクトルでは, この1本線の信号強 度が著しく増大した。この信号強度の増加を利用し て照射ナツメグの検知が可能となる<sup>®</sup>。

#### 2. 照射誘導ラジカルの飽和挙動

Fig.3にマイクロ波強度を0.1~200mWに変化さ





Fig. 2 ESR spectrum of nutmeg before irradiation.

せて計測した信号の強度の変化を示した。線形理論 による計算プログラムを用いたシミュレーションを 実線で示した。実験値をシミュレーションとの フィッティングができた。マイクロ波強度が増すご とに信号強度は増大し、一定のマイクロ波強度で飽 和し、それ以降は減少した。閾値を示すマイクロ波 強度は、照射前は5.0 ~ 10mWであり、照射後は8.5 ~ 18mWであった。照射により、ラジカルの緩和現 象が変わることがわかった。

#### 3. 照射処理と緩和時間

放射線照射量の増加に伴い,緩和時間 T1 が短く なり T2 が長くなる<sup>®)</sup>。Table 1 に T1, T2 及び相乗平 均(T1T2) 1/2 を示した。照射量の増加により相乗 平均が減少した。

Kevan ら<sup>11)</sup>は T1, T2 の相乗平均が液体窒素温度で 有機ガラスの照射量の増加によって小さくなること を報告している。照射により遊離した電子が有機ガ



Fig. 3 Saturation curve of ESR signals of nutmeg a) before and b) 5 kGy radiation with  $\gamma$ -ray.

| Irradiation     | $T_1(\mu s)$ | $T_2(ns)$ | $\sqrt{T_1T_2}$ (µs) |
|-----------------|--------------|-----------|----------------------|
| non-irradiation | 16           | 93        | 1.2                  |
| 1 kGy           | 8            | 134       | 0.98                 |
| 3 kGy           | 7            | 134       | 0.95                 |
| 5 kGy           | 8            | 130       | 1.0                  |
|                 |              |           |                      |

Table 1Relaxation times (T1 and T2) and their geometrical average<br/>of nutmeg (Myristica fragrans).

ラスの中で不均一に分布することによる T1, T2 の 変化であるという結論を導き出している。食品は非 常に不均一な系であると考えられるため,照射によ る不対電子の分布が緩和時間の変化につながってい ると推測できる。

#### まとめ

ESR を利用し、γ線照射ナツメグのラジカルの緩 和現象を検討した。照射前の ESR スペクトルで有 機フリーラジカル由来のg値が約2.0を示す強く鋭 い1本線が観測され,照射後にはこの1本線の信号 強度が増加した。この ESR 信号についてマイクロ 波強度を 0.1mW ~ 200mW に変化させて計測した。 飽和曲線は照射処理によって顕著に変化した。ESR 信号の計算プログラムを開発し,ラジカルの緩和現 象を解析した。スピンー格子緩和時間(T1)とスピ ンースピン緩和時間(T2)は,照射量に応じて変化 した。T1が短く,T2 は長くなった。T1とT2 の相 乗平均は減少した。食品は不均一な系であるから, 照射による不対電子の分布の変化が緩和現象に影響 していると考えた。

#### 参考文献

- Dickson, J.S. Food Irradiation.Principles and Applications (Molins, R.A. ed), chapt. 14, p.23-36, New York, John Wiley (2001).
- 2) Ukai, M.; Shimoyama, Y. Free radicals in irradiated pepper: An electrum spin resonance study. *Appl. Magn. Reson.*. 24, p.1-11 (2003).
- 3) Nakamura, H. et al. An Electron Spin resonance

Study of ginseng irradiated by gamma ray. *Spectrochemica Acta.*. **63**(4), p.883-887 (2006).

- 4) Shimoyama, Y.; Ukai, M. Free radicals in irradiated wheat flour detected by Electron Spin Resonance spectroscopy. *Spectrochemica Acta.*.
  63 (4), p.888-890 (2006).
- 5) Ukai, M., et al. An ESR Protocol based on relaxation phenomena in irradiated foods. *Spectrochemica Acta.*. 63(4), p.879-882 (2006).
- 6) Castner, T. G. Jr. Saturation of the paramagnetic resonance of a V center. *Phys. Rev.*. **115**, p.1506-1519 (1959).
- 7) Cullis, P. R. Electron paramagnetic resonance in inhomogenously broadened systems: A spin temperature approach. *J. Magn. Reson.*. 21, p.397-406 (1976).
- 8) 亀谷宏美 ほか. 照射ナツメグ (Myristica fragrans)の ESR による検知. *RADIOISOTOPES*. **58**, p.179-185 (2009).
- 9) Maruani, J. Continuous saturation of "dispersion" singularities and application to molecular triplet states. J. Magn. Reson.. 7, p.207-215 (1972).
- Gautschi, W. Efficient computation of the complex error function. *SIAM J. Numer. Anal.*. 7, p.187-195 (1970).
- Kevan, L.; Chen, D. H. Spatial distribution of trapped electrons in γ-irradiated organic glasses. *J. Chem. Phys.*. **49**(4) p.1970-1971 (1968).

(2009年7月13日受理)