# 放射線照射したニンニクにおける ラジカルの測定

## 亀谷宏美,貝森良彦,鵜飼光子

著

原

Reprinted from RADIOISOTOPES, Vol.59, No.7 July 2010



Japan Radioisotope Association http://www.jrias.or.jp/

### 放射線照射したニンニクにおけるラジカルの測定

亀谷宏美, 貝森良彦, 鵜飼光子

北海道教育大学 040-8567 北海道函館市八幡町1-2

2009年8月31日 受理

ESR 法を用いた照射ニンニクの計測を行った。照射処理は γ 線を用いた。ニンニクの ESR 信号 は、g=2.00の1本線であった。この1本線の信号は有機フリーラジカル由来の信号である。照射 処理により、1本線の信号強度が増大した。また、この信号の近傍に2本のセルロースラジカルの 信号が観測された。1本線の ESR 信号強度は照射線量に依存して増大した。

Key Words : garlic, gamma ray irradiation, radical, ESR

#### 1. 緒 言

食品への放射線照射殺菌の健全性は国際的に 認知されている。今後更にこの殺菌技術は拡大 することが予想される。事実,国際原子力機関 (IAEA)によると2004年には香辛料や乾燥野 菜など約30万tが照射殺菌され全世界に流通 していると報じている<sup>1)</sup>。

電子スピン共鳴法(Electron Spin Resonance, ESR)は照射食品検知法の一つである。ESR を用いた照射食品の分析について近年多くの報 告<sup>2)-9)</sup>があり,ESR は照射誘導ラジカルを直接 計測する有用な方法であると評価されている。 著者らはこれまで照射食品のESR による検知 法について報告した<sup>10)-17)</sup>。

ニンニク(Allium sativum)は、ネギ科の多年 草で、球根(鱗茎)は香辛料として用いられ、 ガーリックとも呼ばれる。一般的に市販されて いるニンニクは分球ニンニクである。ニンニク は日本では主に青森県産のものが流通している。 また、中国からの輸入ニンニクも広く流通して いる。市販ニンニクは芽が出やすく日持ちが悪 いものがある。照射ニンニクの日持ち効果につ いて消費者の体験報告<sup>18)</sup>があり,γ線処理はニ ンニクの芽止めに有効であると報告されている。

ESR を用いた照射ニンニクについての報告 は少ない。Desrosiers ら<sup>19)</sup>は照射ニンニクの皮 を ESR により計測し, g=2.00 に 1 本線の信 号を観測したと報告している。Cutrubinis ら<sup>20)</sup> はニンニクに  $\gamma$ 線照射を行い,発芽試験につ いて報告している。

日本では照射食品の検知法として熱ルミネッ センス(Thermoluminescence, TL)法がある。 このTL法の検知対象食品にニンニクが追加さ れている<sup>21)</sup>。本研究では,照射ニンニクのESR 計測を行い,ESR法が照射ニンニクのラジカ ル測定に有用であるか否かについて検討した。

#### 2. 実験方法

#### 2·1 試料

試料は青森県産分球ニンニク3種である。試 料1は函館市内の小売店から,試料2は函館市 内の大型量販店から購入した。いずれも2009 年7月に購入した。購入後すぐに照射処理した。 試料3は青森県上北郡七戸町で6月下旬に収穫 後,約3週間,機械乾燥し,茎切り,皮むきな どの作業をしてから JA とうほく天間の天間林 支所で選別,袋詰めしたものを用いた。袋詰め 後すぐにそのまま照射処理した。試料3のニン ニクは通常行われる零下2℃での低温貯蔵や 乾熱芽止め処理はされていない。

#### 2·2 照射処理

試料 1, 2 は 3 個のニンニクの皮をはいでポ リビニル製の袋に入れ,真空脱気後に密封し, これを照射処理した。試料 3 は袋詰めの状態で 照射処理した。真空脱気はしていない。照射処 理は独立行政法人日本原子力研究開発機構高崎 量子応用研究所にて $\gamma$ 線を用いて行った。照 射量は試料 1,2 は 0.05 ~ 10 kGy,試料 3 は 0.02 ~ 0.15 kGy とした。照射処理は室温にて 行った。

2·3 試料調製

試料は照射処理後,冷蔵庫内で保存した。室 温に戻してから試料管(ラジカルリサーチ株式 会社,RST-5MSTD)に詰めた。試料3は室温 にもどしたニンニクから試料1,2と同様に3 個選び皮をはがした。これらの皮の試料から, 食品分析で一般に用いる円錐四分法<sup>22)</sup>により 10個の分析用試料を調製した。試料管の端か ら 30 mm のところに印をつけ,この部分まで 試料を詰めた。

酸素脱気を行うと ESR スペクトルはより明 確に確認できる<sup>15)</sup>。ESR 信号を確実に観測す るため試料管内の酸素を脱気する処理を試料管 に試料を詰めた直後に行った。脱気はまず試料 を詰めた試料管をゴム栓にて封をした。プラス チック製ディスポシリンジ(アズワン株式会 社)の本体上部を耐圧ゴム管を用いて三方コッ クにつなぎ,残りの2口を真空ポンプとアルゴ ンガスにつないだ。シリンジの注射針をゴム栓 を通して試料管に差し込み,三方コックを操作 して真空ポンプと試料管をつないだ。真空ポン プを作動させて1分間試料管内を脱気した。そ の際,試料管内の圧力は1mmHgであった。 その後,三方コックを操作して,試料管とアル ゴンガスをつなぎ,試料管内にガスを1分間流 入した。脱気とガスの流入操作を10回繰り返 した。試料管上部のパイレックス部位をバーナ ーにて焼き切った。バーナーの熱が試料に伝わ らないよう,パイレックス上部ゴム栓の3cm ほど下の部分を焼き切った。

#### 2·4 ESR 測定

ESR 分光器は X-band の JES-FA100(日本 電子株式会社)を用いた。磁場を安定に保つた め,電磁石の冷却水は冷却水循環装置(東京理 化器械株式会社)により 20℃にコントロール した。ESR を起動させ、磁場を安定化させる ために 30 分間放置してから測定を開始した。 測定は室温で行った。

試料が測定範囲内にセットされるよう,スケ ール(日本電子株式会社)で試料管を挿入する 深さを決定し,シリコンキャップを取り付けた。 共振器に試料管をシリコンキャップの部分まで 挿入し,コレットナットで固定した。

ESR の測定は主に次のパラメータ設定によ り行った。Center Field; 250 mT, Sweep Width; 250 mT, Frequency; 9429 ~ 9434 MHz, Modulation frequency; 100 kHz, Modulation width; 1.0 mT, Time constant; 0.03 s, Sweep time; 4.0 min である。マイクロ波強度は 0.1 ~ 100 mW まで変化させた。WIN-RAD 解析ソフト (ラジカルリサーチ株式会社)を用いた。g 値 は Mn マーカー (日本電子株式会社)を用い補 正して求めた。

#### 3. 実験結果

3·1 ESR 信号

Fig.1 に未照射(上図)及び照射(下図)ニ ンニクの皮のESRスペクトルを示した。いず れも Amp. Gain は 150 である。Fig.1 で示す ように鋭い1本線 P<sub>1</sub> 信号が,未照射試料と照 射試料でg値が約2.00の位置に観測された。 この結果は Desrosiers ら<sup>19)</sup>の報告したg=2.00



Fig. 1 Typical ESR spectrum of garlic (sample 1) before and after irradiation at 5 kGy.

|          | Radiation<br>Dose (kGy) | g-values              |  |  |
|----------|-------------------------|-----------------------|--|--|
| Sample 1 | 0                       | $2.0024 \pm 0.0005$   |  |  |
|          | 5                       | $2.0013 \pm 0.0003$   |  |  |
| Sample 2 | 0                       | $2.0019 \pm 0.0026$   |  |  |
|          | 5                       | $2.0014 \pm 0.0003$   |  |  |
| Sample 3 | 0                       | $2.0021 ~\pm~ 0.0006$ |  |  |
|          | 0.1                     | $2.0017 \pm 0.0007$   |  |  |

 
 Table 1
 g-values of garlic before and after irradiation

Values are shown as means  $\pm$  S.D. (n=10)

と一致した。更に P<sub>1</sub> 信号は, 照射食品や照射 漢方薬で報告された 1 本線<sup>10)-17)</sup>と同じ g 値で あることから照射植物性食品で同定したラジカ ル種と同じである。P<sub>1</sub> 信号は照射誘導ラジカ ルの他, 種々の有機ラジカル<sup>23)</sup>による信号に由 来する。例えば, ハイドロキノン類やタンパク 質などの有機ラジカルである。

Table 1 に 3 種の試料の g 値を示した。10 個 の分析用試料について ESR 計測し, g 値の平 均と標準偏差を求めた。g 値は Mn マーカーと 信号解析ソフト WIN-RAD を用い,小数点以 下第5位まで算出される値を四捨五入して第4 位で示した。Table 1 で示すように,各試料の g 値に有意差はなかった。試料 1,2 は市販品 であり芽止めのための低温貯蔵や乾熱芽止め処 理が行われていると予想される。試料 3 はこの ような芽止め処理はない。試料間の差異は g 値からはみられなかった。

Fig.1から明らかなように照射処理により P<sub>1</sub>



Fig. 2 Typical ESR spectrum of garlic (sample 1) following by irradiation at 5 kGy.

の信号強度が増加した。Fig. 1(下図)及び Fig. 2 で示すように、P<sub>1</sub>信号の近くにサイド信号(S<sub>1</sub>, S<sub>2</sub>)を検出した。これは、照射により新たに誘 導された信号である。Fig. 2 から S<sub>1</sub>、S<sub>2</sub>信号は P<sub>1</sub>信号の左右に約 3 mT の位置に観測された。 すなわち、ハイパーファインは約 3 mT (30 G)<sup>8)</sup> であった。このことからこれらの信号は 3 本線 であり、セルロースラジカル<sup>24)</sup>であると推定で きる。

ニンニク試料で観測された信号は未照射試料 では  $P_1$  信号, 照射試料では  $P_1$  信号と  $S_1$ ,  $S_2$  信 号であった。従来, 食品試料では  $Mn^{2+}$ や  $Fe^{3+}$ などの信号<sup>10)-17)</sup>が観測されたが, ニンニクの 皮では遷移金属イオンは検出されなかった。

3·2 飽和挙動

ラジカル種の同定にはマイクロ波強度を変え ESR 計測し,信号強度の飽和現象を検討する ことが有用である<sup>10</sup>。

P<sub>1</sub>信号の各マイクロ波強度における信号強 度の変化を Fig.3 に示した。未照射試料の信 号強度を白点で,照射試料の信号強度を黒点で 示した。マイクロ波強度が増すにしたがい P<sub>1</sub> の信号強度は増大し,あるマイクロ波強度以降 は信号強度が減少,若しくはプラトーとなり一 定の閾値を得る飽和挙動を示した。P<sub>1</sub>の信号 強度が最高値を示すマイクロ波強度を Table 2 及び 3 に示した。閾値を示すマイクロ波強度は いずれの試料でも照射未照射にかかわらず 11 ~ 16 mW となった。閾値を示す ESR 信号



Fig. 3 Saturation behavior of  $P_1$  signals (sample 1) before and after irradiation.

強度を照射量ごとにプロットして Fig.4 を示した。照射量と ESR の信号強度は線形若しくは指数関数的な関係を示した。

#### 4. 考察

4・1 ニンニクの皮の ESR 信号 ニンニクの皮で確認された P<sub>1</sub> 信号の低磁場

| Dediction    | Threshold value       |            |  |
|--------------|-----------------------|------------|--|
| Deses (IrGy) | Peak Intensity        | Power      |  |
| Doses (KGy)  | (Peak high/Amp. Gain) | (mW)       |  |
| 0            | $2.2\pm0.1$           | $13 \pm 1$ |  |
| 0.02         | $2.5\pm0.2$           | $13~\pm~1$ |  |
| 0.03         | $2.5\pm0.1$           | $13~\pm~1$ |  |
| 0.05         | $2.6\pm0.1$           | $14~\pm~2$ |  |
| 0.07         | $2.8 \pm 0.1$         | $13~\pm~1$ |  |
| 0.10         | $3.0\pm 0.1$          | $13~\pm~1$ |  |
| 0.15         | $3.4\pm0.1$           | $14 \pm 1$ |  |
|              |                       |            |  |

Table 3 Threshold values of garlic (sample 3) before and after irradiation

Values are shown as means ± S.D. (n=10)

側でスペクトルがゆるやかな山を描いているこ とを確認した。室温測定であったので明瞭な信 号の観測はできなかったと考えられる。低温測 定(77 K)を行えば Cu<sup>2+</sup>などの信号が検出で きる可能性がある。

照射セルロースの ESR 計測では,照射誘導 信号は3本線であると報告<sup>25),26)</sup>されている。そ のため,S<sub>1</sub>,S<sub>2</sub>信号は,P<sub>1</sub>信号との重なりに より検出できないもう1本の信号からなる3本 線と考えられる。

S信号は Raffi らにより照射の有無の判別に 有用な,照射誘導ラジカルとして報告されてい

Table 2 Threshold values of garlic (sample 1 and sample 2) before and after irradiation

|             | Threshold value       |            |                       |            |  |
|-------------|-----------------------|------------|-----------------------|------------|--|
| Radiation   | Sample 1              |            | Sample 2              |            |  |
| Doses (kGy) | Peak Intensity        | Power      | Peak Intensity        | Power      |  |
|             | (Peak high/Amp. Gain) | (mW)       | (Peak high/Amp. Gain) | (mW)       |  |
| 0           | $1.5\pm0.1$           | $14 \pm 3$ | $1.8\pm0.1$           | $13 \pm 2$ |  |
| 0.05        | $2.7\pm0.1$           | $14 \pm 2$ | $2.5\pm0.2$           | $14 \pm 1$ |  |
| 0.1         | $3.0\pm0.1$           | $13 \pm 2$ | $3.5\pm0.3$           | $13 \pm 1$ |  |
| 1           | $4.2\pm0.2$           | $15 \pm 1$ | $5.9\pm0.1$           | $14~\pm~1$ |  |
| 3           | $7.1\pm0.2$           | $12 \pm 1$ | $9.4\pm0.2$           | $14~\pm~3$ |  |
| 5           | $11.4\pm0.1$          | $15 \pm 2$ | $11.9\pm0.2$          | $13 \pm 2$ |  |
| 10          | $15.4\pm0.1$          | $13 \pm 2$ | $17.3\pm0.3$          | $13 \pm 2$ |  |

Values are shown as means  $\pm$  S.D. (n=10)



Fig. 4 Relationship of radiation dose level and ESR signal intensity.

る<sup>2)</sup>。ニンニクの皮では1kGy 以上の照射を行った試料で Fig.2のようにS信号を明瞭に観 測することができた。そこで、S信号による照 射の有無の判別は1kGy 以上の照射処理において有用であると考えられる。

セルロースラジカル由来と考えられる S<sub>1</sub>, S₂ 信号については照射線量は同じでも信号の大き さや面積,更に時間経過による減衰などについ てニンニク以外のセルロース食品との比較検討 を今後詳細に行う必要があろう。

4·2 飽和挙動

植物性食品を試料として ESR 計測した場合, シャープな信号が観測されることは稀である。 数種類の信号が同時に検出された報告も少ない。 著者らは,すでに植物性食品の ESR 信号計測 試験において信号を明瞭に観測し,ラジカル種 の同定に成功している<sup>10)-17)</sup>。明瞭な信号の観 測に成功した要因は,ESR 信号の飽和現象を 検討したのちに,信号強度の計測を行っている ことによる。

4・3 吸収線量に対する ESR 信号強度依存性 安定なラジカル種を指標とし、外挿法<sup>27),28)</sup>に より照射量を推定できることから、照射履歴の 定量法となる。外挿法には線形関数外挿と指数 関数外挿とがある。添加線量率が小さい場合に は照射により誘導されるラジカル量は線形的に 増大するため,線形関数外挿による最適化が行 われる27)。低線量照射を行った試料3を線形関 数外挿した。添加線量率が増すとラジカルは飽 和状態となり、指数関数外挿による最適化がな される28)。試料1及び2では指数関数外挿によ る最適化を行った。Fig.4に、照射線量とESR 信号強度との関係を示した。いずれの試料でも 吸収線量に対する ESR 信号強度依存性が確認 でき、最適化が可能であった。未照射試料にお いても、微弱な ESR 信号が観測できる。P<sub>1</sub>信 号は吸収線量依存的に増大する。P<sub>1</sub>のESR シ グナルが検出できても必ずしも照射処理とは言 えないが、追加照射することにより、照射・未 照射を判断できる可能性がある。また、照射セ ルロース由来と考えられる S1, S2 信号も放射 線を当てると吸収線量に応じて信号強度が増大 する。

4·4 ESR による測定

照射ニンニクの皮を ESR 法で計測するとg値が約2.00を示す1本線の $P_1$ 信号を検出した。 照射により $P_1$ 信号は増大した。更に, $S_1$ , $S_2$ 信号を検出した。この $S_1$ , $S_2$ 信号は1 kGy 照 射以上の線量で照射したニンニク試料で明瞭に 観測され,1 kGy よりも低い線量の照射試料で は検出できなかった。低線量処理においても $S_1$ ,  $S_2$ 信号が観測可能となるような ESR プロトコ ールの更なる検討が必要である。

今後は照射処理後の保存条件(温度,湿度, 期間など)やニンニクの測定部位を変えてESR 計測し,実際にESRを検知法として利用する 際に必要となる実用的な知見の蓄積を行う。

(7)

#### 420

#### 文 献

- 1)等々力節子,食品照射の海外の動向,食品照射, 40,49-58(2005)
- Raffi, J. and Stocker, P., Electron paramagnetic resonance detection of irradiated foodstuffs, *Appl. Magn. Reson.*, 10, 357-373 (1996)
- 3) Raffi, J., Yordanov, N. D., Chabane, S., Douifi, L., Gancheva, V. and Ivanova, S., Identification of irradiation treatment of aromatic herbs, spices and fruits by electron paramagnetic resonance and thermoluminescence, *Spectrochim. Acta*, 56, 409-416 (2000)
- Bayram, G. and Delincée, H., Identification of irradiated Turkish foodstuffs combining various physical detection methods, *Food Control*, 15, 81-91 (2004)
- Cutrubinis, M., Delincée, H., Stahl, M., Röder, O. and Schaller, H. J., Detection methods for cereal grains treated with low and high energy electrons, *Radiat. Phys. Chem.*, **72**, 639-644 (2005)
- Polovka, M., Brezova, V., Stasko, A., Mazur, M., Suhaj, M. and Simko, P., EPR investigations of gamma-irradiated ground black pepper, *Radiat. Phys. Chem.*, **75**, 309-321 (2006)
- Polovka, M., Brezova, V. and Simko, P., EPR spectroscopy : A tool to characterize gamma-irradiated foods, J. Food Nutr. Res., 46, 75-83 (2007)
- Yordanov, N. D., Lagunov, O. and Dimov, K., ESR spectra induced by gamma-irradiation of some dry medical herbs, *Radiat. Phys. Chem.*, 78, 277-280 (2009)
- Yordanov, N. D. and Aleksieva, K., Preparation and applicability of fresh fruit samples for the identification of radiation treatment by EPR, *Radiat. Phys. Chem.*, 78, 213-216 (2009)
- Ukai, M. and Shimoyama, Y., Free radicals in irradiated pepper: An electrum spin resonance study, *Appl. Magn. Reson.*, 24, 1-11 (2003)
- 中村秀夫,鵜飼光子,下山雄平,γ線照射した 朝鮮人参の電子スピン共鳴法による解析, RA-DIOISOTOPES, 53, 501-506(2004)
- 12) Nakamura, H., Ukai, M. and Shimoyama, Y., An electron spin resonance study of ginseng irradiated by gamma ray, *Spectrochem. Acta*, **63**, 883-

887 (2006)

- 13) 亀谷宏美,鵜飼光子,ESR による照射殺菌朝鮮 人参の検知, RADIOISOTOPES, 55, 451-455 (2006)
- Shimoyama, Y. and Ukai, M., Free radicals in irradiated wheat flour detected by electron spin resonance spectroscopy, *Spectrochem. Acta*, 63, 888-890 (2006)
- 15) 亀谷宏美, 鵜飼光子, 酸素フリー雰囲気での ESR による γ 線照射で衛生化したアガリクスの分析, *RADIOISOTOPES*, 56, 437-441(2007)
- 16) Shimoyama, Y., Ukai, M. and Nakamura, H., Advanced protocol of detection for irradiated food by ESR, *Radiat. Phys. Chem.*, 76, 1837-1839 (2007)
- 17) 亀谷宏美,小川英之,中村秀夫,鵜飼光子,下 山雄平,照射ナツメグ(Myristica fragrans)のESR による検知, RADIOISOTOPES, 58, 179-185 (2009)
- 18)市川まりこ、飯塚友子、蒲生恵美、小堀恵美子、 渋谷美智子、志保沢久子、千葉悦子、横山勉、 福富文武、等々力節子、鵜飼光子、菊地正博、 小林泰彦、市民が体験した食品照射の素朴な実 感、第46回アイソトープ・放射線研究発表会要 旨集、4(2009)
- Desrosiers, M. F. and McLaughlin, W. L., Examination of gamma-irradiated fruits and vegetables by electron spin resonance spectroscopy, *Radiat. Phys. Chem.*, 34, 895-898 (1989)
- Cutrubinis, M., Delincee, H., Bayram, G. and Villavicencio, C. H., Germination test for identification of irradiated garlic, *Eur. Food Res. Technol.*, 219, 178-183 (2004)
- 21) 食安発第 1211002 号
- 小原哲二郎,鈴木隆雄,岩尾裕之,第2版食品 分析ハンドブック,pp.1-3,建帛社,東京(1975)
- 23) 石津和彦, 実用 ESR 入門, pp. 261-273, 講談社 サイエンティフィック, 東京(1981)
- 24) 亀谷宏美,加恵田庸子,鵜飼光子,中村秀夫, 二種のグルコースポリマーの照射処理により新 規に誘導されるラジカルの解析,食品照射,42, 4-8(2007)
- 25) Chidambarewaran, P. K. and Sundaram, V., Formation and reaction of radiation-induced free radicals in chemically modified cotton celluloses, *J. Polym. Sci.*, 9, 2651-2658 (1971)
- Ranby, B., ESR Spectroscopy in Polymer Research, pp.235, Springer-Verlag, Berlin and

Heidelberg(1977)

 Ikeya, M., New Applications of Electron Spin Resonance, pp.398-399, World Scientific Publishing Company, Singapore (1993)

28) 池谷 元, 概論: ESR 年代測定法, 地球, 3, 468-477 (1981)

#### Abstract

#### Analysis of Radicals of Irradiated Garlic

Hiromi KAMEYA, Yoshihiko KAIMORI and Mitsuko UKAI

Hokkaido University of Education 1-2 Hachiman-cho, Hakodate-shi, Hokkaido 040-8567, Japan

The detection method of gamma ray irradiated garlic using Electron Spin Resonance (ESR) spectroscopy was studied. The ESR spectrum was consisted of one singlet signal at g=2.00. This signal is due to an organic free radical. Upon irradiation, the intensity of the signal was increased. Also two signals due to cellulose radical were detected nearby the singlet. The intensity of the singlet signal was increased as depend on the increase of the irradiation dose level.

(Received August 31, 2009)